Tractor & Construction Plant Wiki
Advertisement

Agricultural machinery is one of the most revolutionary and influential applications of modern technology. The truly elemental human need for food has often driven the development of technology and machines. Over the last 250 years, advances in farm equipment have transformed the way people are employed and produce their food worldwide!

History[]

Hand tools[]

Tullos 3ft-6 threshing drum at Kettering 08 - IMG 1977

A Tullos Theshing Drum

The first person to turn from the hunting and gathering lifestyle to farming probably did so by using his bare hands, and perhaps some sticks or stones. Tools such as knives, scythes, and wooden ploughs were eventually developed, and dominated agriculture for thousands of years. During this time, almost everyone worked in agriculture, because each family could barely raise enough food for themselves with the limited technology of the day.

The Industrial Revolution[]

With the coming of the Industrial Revolution and the development of more complicated machines, farming methods took a great leap forward. Instead of harvesting cereals/grain by hand with a sharp blade, wheeled machines cut a continuous swath. Instead of threshing the grain by beating it with sticks, threshing machines separated the seeds from the heads and stalks.

Steam power[]

Harrison McGregor root cutter - bath - DSC01727

A Harrison McGregor Root cutter and cleaner

Harrison McGregor root cutter cleaner - bath - DSC01728

Built in cleaner drum on a root cutter built by Harrison McGregor & Co

These machines required a lot of power, which was originally supplied by horses or other domesticated animals. With the invention of steam power came the portable engine and later the traction engine, a multi-purpose, mobile energy source that was the ground-crawling cousin to the steam locomotive. Agricultural steam engines took over the heavy pulling work of horses, and were also equipped with a pulley that could power stationary machines via the use of a long belt. The steam-powered behemoths were low-powered by today's standards but, because of their size and their low gear ratios, they could provide a large drawbar pull.

The internal combustion engine[]

Gasoline, and later diesel engines became the main source of power for the next generation of tractors. These engines also contributed to the development of the self-propelled, combined harvester and thresher, or combine for short. Instead of cutting the grain stalks and transporting them to a stationary threshing machine, these combines cut, threshed, and separated the grain while moving continuously through the field.

Types of machinery[]

MF muck spreader

A MF Manure spreader

Cable pulled plough closeup

A Balanced steam pulled plough at work

Combines might have taken the harvesting job away from tractors, but tractors still do the majority of work on a modern farm. They are used to pull implements—machines that till the ground, plant seed, or perform a number of other tasks.

Tillage implements prepare the soil for planting by loosening the soil and killing weeds or competing plants. The best-known is the plough, the ancient implement that was upgraded in 1838 by a man named John Deere. Plows are actually used less frequently in the United States of America today, with offset disks used instead to turn over the soil and chisel plough used to gain the depth needed to retain moisture.

The most common type of seeder is called a planter and spaces seeds out equally in long rows, which are usually 2 to 3 feet apart. Some crops are planted by seed drills, which put out much more seed in rows less than a foot apart, blanketing the field with crops. Transplanters fully or partially automate the task of transplanting seedlings to the field. With the widespread use of plastic mulch, plastic mulch layers, transplanters, and seeders lay down long rows of plastic, and plant through them automatically.

After planting, other implements can be used to cultivate weeds from between rows, or to spread fertilizer and pesticides. Hay balers can be used to tightly package grass into a storable form for the winter months.

Modern irrigation also relies on a great deal of machinery. A variety of engines, pumps and other specialized gear are used to provide water quickly and in high volumes to large areas of land. Similar types of equipment can be used to deliver fertilizers and pesticides.

New technology and the future[]

The basic technology of agricultural machines has changed little in the last century. Though modern harvesters and planters may do a better job or be slightly tweaked from their predecessors, the £200,000 combine of today still cuts, threshes, and separates grain in essentially the same way it has always been done. However, technology is changing the way that humans operate the machines, as computer monitoring systems, GPS locators, and self-steer programs allow the most advanced tractors and implements to be more precise and less wasteful in the use of fuel, seed, or fertilizer. In the foreseeable future, some agricultural machines will be capable of driving themselves, using GPS maps and electronic sensors. Even more esoteric are the new areas of nanotechnology and genetic engineering, where submicroscopic devices and biological processes, respectively, are being used as machines to perform agricultural tasks in unusual new ways.


See also[]

Reference[]

Based on Wikipedia article (to define Agriculture in general terms, feel free to expand for UK relevance, but here mainly as a in article link definition)

Smallwikipedialogo This page uses some content from Wikipedia. The original article was at Agricultural machinery. The list of authors can be seen in the page history. As with Tractor & Construction Plant Wiki, the text of Wikipedia is available under the Creative Commons by Attribution License and/or GNU Free Documentation License. Please check page history for when the original article was copied to Wikia


Advertisement